Primitive Rings with Involution Whose Symmetric Elements Satisfy a Generalized Polynomial Identity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotent Elements in Skew Polynomial Rings

 Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...

متن کامل

Free Symmetric and Unitary Pairs in Division Rings with Involution

Let D be a division ring with an involution and characteristic different from 2. Then, up to a few exceptions, D contains a free pair of symmetric elements provided that (a) it is finite-dimensional and the center has a finite sufficiently large transcendence degree over the prime field, or (b) the center is uncountable, but not algebraically closed in D. Under conditions (a), if the involution...

متن کامل

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

Partial isometries and EP elements in rings with involution

If R is a ring with involution, and a† is the Moore-Penrose inverse of a ∈ R, then the element a is called: EP, if aa† = a†a; partial isometry, if a∗ = a†; star-dagger, if a∗a† = a†a∗. In this paper, characterizations of partial isometries, EP elements and star-dagger elements in rings with involution are given. Thus, some well-known results are extended to more general settings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1970

ISSN: 0002-9939

DOI: 10.2307/2037397